Android-OOM案例分析

在Android(Java)开发中,基本都会遇到java.lang.OutOfMemoryError(本文简称OOM),这种错误解决起来相对于一般的Exception或者Error都要难一些,主要是由于错误产生的root cause不是很显而易见。由于没有办法能够直接拿到用户的内存dump文件,如果错误发生在线上的版本,分析起来就会更加困难。本文从一个具体的案例切入,介绍OOM分析的思路及相关工具的使用。

案例背景

在美团App 7.4~7.7版本期间,美食业务的OOM数量居高不下,远高于历史水平,主要都是DECODE本地的资源出错。

20171107151006844360459.png

图中OOM数量为各版本发版后第一个月的统计量,包含新发版本及历史版本。对比了同时期其他业务的情况,也有类似OOM。由于美食业务的访问量占美团App的比重较大,因此,OOM的数量相对其他业务也多一些。

思路方案

在问题较为严重的7.6~7.7版本期间,团队对OOM频现的原因有过各种猜测。笔者怀疑过是否是业务上某些修改引起的,例如头图尺寸变大,或者是由页面模块加载方式引起的等等。但这些与OOM问题出现的时间并不吻合。其次也怀疑过是否由某些ROM的Bug导致,但此推断缺乏有力的证据支撑。因此,要找到OOM的root cause,根本途径还是找到谁占的内存最多,然后再根据具体case具体分析,为什么占了这么多。

采集用户手机内存信息

要分析内存的占用,需要内存的dump文件,但是dump文件一般都比较大,让用户配合上传dump文件不合适。所以希望能够运行时采集一些内存的特征然后随着crash日志上报上来。当用户发生OOM时,dump出用户的内存,然后基于com.squareup.haha:haha:2.0.3分析,得到一些关键数据(内存占用最多的实例及所占比例等)。但这个方案很快就被证明是不可行的。主要基于下面几个原因:

需要引入新的库。
dump和分析内存都很耗时,效率难以接受。
OOM时内存已经几乎耗尽,再加载内存dump文件并分析会导致二次OOM,得不偿失。
模拟复现OOM

采集用户手机内存信息的方案不可行,那么只能采取复现用户场景的方式。由于发生OOM时,用户操作路径的不确定性,无法精确复现线上的OOM,因此采取模拟复现的方式,最终发生OOM时的栈信息基本一致即可。为了能够尽量模拟用户发生OOM的场景,需要基本条件基本一致,即用户使用的手机的各种相关参数。

挖掘OOM特征

分析7.4以来的OOM,列出发生OOM的机器的特征,主要是内存和分辨率,适当考虑其它因素例如系统版本。

机型 内存 分辨率 OS stack log
OPPO N1(T/W) 2G 1920 * 1080 4.2.2 java.lang.OutOfMemoryError

at android.graphics.BitmapFactory.nativeDecodeAsset(Native Method)|
|HM 2LTE-CMCC| 1G| 1280 720| 4.4.4| java.lang.OutOfMemoryError
at android.graphics.BitmapFactory.nativeDecodeAsset(Native Method)|
|Newman CM810| 2G| 1920
1080| 4.4.4| java.lang.OutOfMemoryError
at android.graphics.BitmapFactory.nativeDecodeAsset(Native Method)|
|LGL22| 2G| 1830 1080| 4.2.2| java.lang.OutOfMemoryError
at android.graphics.BitmapFactory.nativeDecodeAsset(Native Method)|
|OPPO X909| 2G| 1920
1080| 4.2.2| java.lang.OutOfMemoryError
at android.graphics.BitmapFactory.nativeDecodeAsset(Native Method)|
|Lenovo K900| 2G| 1920 1080| 4.2.2| java.lang.OutOfMemoryError
at android.graphics.BitmapFactory.nativeDecodeAsset(Native Method)|
|GiONEE E6| 2G| 1920
1080| 4.2.1| java.lang.OutOfMemoryError
at android.graphics.BitmapFactory.nativeDecodeAsset(Native Method)|

这些特征可以总结为:内存一般,分辨率偏高,OOM的堆栈log基本一致。其中,OPPO N1(T/W)上所发生的OOM比重较高,约为65%,因此选定这款机器作为复现OOM的机器。

关键数据(内存dump文件)

需要复现OOM然后获取内存dump。思路是采取内存压力测试,让问题暴露的快速且充分。具体方案为:

  • 选取图片资源多且较为复杂的页面,比如美食的POI详情页。
  • 加载30次该页面,为了增加OOM的几率,30个POI页面的ID是不同的。

OOM发生后,使用Android Studio自带的Android Monitor dump出HPROF文件,然后使用SDK中的hprof-conv(位于sdk_root/platform-tools)工具转换为标准的Java堆转储文件格式,这样可以使用MAT(Eclipse Memory Analyzer)继续分析。

切到histogram视图,按shadow heap降序排列。

选取byte数组,右击->list objects->with incoming references,降序排列可以看到有很多大小一致的byte[]实例。

20171107151006883926615.png

右击其中一个数组->Path to GC Roots-> exclude xxx references

20171107151006888292386.png

如上图所示,这些byte[]都是系统的EdgeEffect的drawable所持有,drawable对应的bitmap占用的空间为1566 406 4 = 2543184,与byte数组的大小一致。

再看另外一个:

20171107151006892587007.png

这些byte[]是被App的一个背景图所持有,如下图:

20171107151006895888632.png

通过ImageView的ID(如图)及build目录下的R.txt反查可知该ImageView的ID名称,即可知其设置的背景图的大小为720 200(xhdpi),加载到内存并考虑density,size刚好是1080 300 * 4 = 1296000,与byte数组大小一致。

数据分析

为什么会出现这些大小一致的byte数组,或者说,为什么会创建多份EdgeEffect的drawable?查看EdgeEffect的源码(4.2.2)可知,其drawable成员也是通过Resources.getDrawable系统调用获取的。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
/**
* Construct a new EdgeEffect with a theme appropriate for the provided context.
* @param context Context used to provide theming and resource information for the EdgeEffect
*/
public EdgeEffect(Context context) {
final Resources res = context.getResources();
mEdge = res.getDrawable(R.drawable.overscroll_edge);
mGlow = res.getDrawable(R.drawable.overscroll_glow);
******
mMinWidth = (int) (res.getDisplayMetrics().density * MIN_WIDTH + 0.5f);
mInterpolator = new DecelerateInterpolator();
}

ImageView(View)获取background对应的drawable的过程类似。

1
2
3
4
5
6
7
8
9
for (int i = 0; i < N; i++) {
int attr = a.getIndex(i);
switch (attr) {
case com.android.internal.R.styleable.View_background:
background = a.getDrawable(attr); // TypedArray.getDrawable
break;
******
}
}

不论是Resources.getDrawable还是TypedArray.getDrawable,最终都会调用Resources.loadDrawable。继续看Resources.loadDrawable的源码,发现的确是使用了缓存。对于同一个drawable资源,系统只会加载一次,之后都会从缓存去取。

既然drawable的加载机制并没有问题,那么drawable所在的缓存实例或者获取drawable的Resources实例是否是同一个呢?通过下面的代码,打印出每个Activity的Resources实例及Resources实例的drawable cache。

1
2
3
4
5
//noinspection unchecked
LongSparseArray<WeakReference<Drawable.ConstantState>> cache = (LongSparseArray<WeakReference<Drawable.ConstantState>>) Hack.into(Resources.class).field("mDrawableCache").get(getResources());
Object appCache = Hack.into(Resources.class).field("mDrawableCache").get(getApplication().getResources());
Log.e("oom", "Resources: {application=" + getApplication().getResources() + ", activity=" + getResources() + "}");
Log.e("oom", "Resources.mDrawableCache: {application=" + appCache + ", activity=" + cache + "}");

20171107151006910770075.png

这也进一步解释了另外一个现象,即这些大小相同的数组的个数基本和启动Activity的数量成正比。

通过数据分析可知,这些drawable之所以存在多份,是因为其所在的Resources实例并不是同一个。进一步debug可知,Resources实例存在多个的原因是开启了标志位sCompatVectorFromResourcesEnabled
虽然最终造成OOM突然增多的原因只是开启一个标志位,但是这也告诫大家阅读API文档的重要性,其实很多时候API的使用说明已经明确告知了使用的限制条件甚至风险。

7.8版本关闭了此标志,发版后第一个月的OOM数量(包含历史版本)为153,如下图。

20171107151006915714253.png

其中新版本发生的OOM数量为22。

总结

对于线上出现的OOM,如何分析和解决可以大致分为三个步骤:

  1. 充分挖掘特征。在挖掘特征时,需要多方面考虑,此过程更多的是猜测怀疑,所以可能的方面都要考虑到,包括但不限于代码改动、机器特征、时间特征等,必要时还需要做一定的统计分析。
  2. 根据掌握的特征寻找稳定的复现的途径。一般需要做内存压力测试,这样比较容易达到OOM的临界值,只是简单的一些正常操作难以触发OOM。
  3. 获取可分析的数据(内存dump文件)。利用MAT分析dump文件,MAT可以方便的按照大小排序实例,可以查看某些实例到GC ROOT的路径。